
DRAFT
Singularity-EOS: Performance Portable Equations of1

State and Mixed Cell Closures2

Jonah M. Miller 1,2¶, Daniel A. Holladay 2,3, Jeffrey H. Peterson 4,3

Christopher M. Mauney2,5, Richard Berger 3, Anna Pietarila Graham5,4

Karen C. Tsai 3, Brandon Barker 1,2,6,7, Alexander Holas2,3,8, Ann E.5

Mattsson9, Mariam Gogilashvili1,2,7,10, Joshua C. Dolence1,2, Chad D.6

Meyer11, Sriram Swaminarayan3, and Christoph Junghans 3
7

1 CCS-2, Computational Physics and Methods, Los Alamos National Laboratory, USA 2 Center for8

Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM 3 CCS-7, Applied Computer9

Scienc, Los Alamos National Laboratory, USA 4 XCP-2, Eulerian Codes, Los Alamos National10

Laboratory, USA 5 HPC-ENV, HPC Environments, Los Alamos National Laboratory, USA 6 Department11

of Physics and Astronomy, Michigan State University, USA 7 Center for Nonlinear Studies, Los Alamos12

National Laboratory, USA 8 Heidelberg Institute for Theoretical Studies, Germany 9 XCP-5, Materials13

and Physical Data, Los Alamos National Laboratory, USA 10 Department of Physics, Florida State14

University, USA 11 XCP-4, Continuum Models and Numerical Methods, Los Alamos National15

Laboratory, USA ¶ Corresponding author16

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer

Submitted: 19 April 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary17

We present Singularity-EOS, a new performance-portable library for equations of state and18

related capabilities. Singularity-EOS provides a large set of analytic equations of state, such as19

the Gruneisen equation of state, and tabulated equation of state data under a unified interface.20

It also provides support capabilities around these equations of state, such as Python wrappers,21

solvers for finding pressure-temperature equilibrium between multiple equations of state, and a22

unique modifier framework, allowing the user to transform a base equation of state, for example23

by shifting or scaling the specific internal energy. All capabilities are performance portable,24

meaning they compile and run on both CPU and GPU for a wide variety of architectures.25

Statement of need26

When expressed mathematically for continuous materials, the laws of conservation of mass,27

energy, and momentum form the Navier-Stokes equations of fluid dynamics. In the limit of28

zero molecular viscosity, they become the Euler equations. These laws have been used to29

describe phenomena as disparate as flow of air over an airplane wing, bacterial motion in fluids,30

and the cataclysmic deaths of stars. However, the fluid equations are not complete, and the31

system must be closed by a description of the material at a sub-continuum (e.g., molecular or32

atomic) scale. This closure is commonly called the equation of state (EOS).33

Equations of state vary from the simple ideal gas law, to sophisticated descriptions multi-phase34

descriptions of the lattice structure of ice or wood, to models of quark-gluon plasma and35

nuclear pasta at ultra high densities. A common form to write an equation of state is as a pair36

of relations:37

𝑃 = 𝑃(𝜌, 𝑇 , 𝜆⃗) and 𝜀 = 𝜀(𝜌, 𝑇 , 𝜆⃗),

which relate the pressure 𝑃 and specific internal energy 𝜀 to density 𝜌, temperature 𝑇, and38

Miller et al. (2024). Singularity-EOS: Performance Portable Equations of State and Mixed Cell Closures. Journal of Open Source Software, 0(0),
6658. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0001-6432-7860
https://orcid.org/0000-0002-0673-9741
https://orcid.org/0000-0001-9425-4674
https://orcid.org/0000-0002-3044-8266
https://orcid.org/0000-0003-2848-832X
https://orcid.org/0000-0002-8825-0893
https://orcid.org/0000-0003-0925-1458
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/6658
https://github.com/lanl/singularity-eos
https://doi.org/
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
potentially some unknown set of additional quantities 𝜆⃗. However, other representations are39

possible, and in common parlance an EOS is the collection of knowledge needed to reconstruct40

some intrinsic thermodynamic quantities from others. For example, the speed of sound through41

a material or the specific heat capacity, which are thermodynamic derivatives of the pressure42

and the specific internal energy, are both determined by the EOS.43

In multi-material fluid dynamics simulations, one often will end up with a so-called mixed cell,44

where two materials exist within the same simulation zone. This can be an artifact of the45

numerical representation; for example a steel bar and the surrounding air may end up sharing a46

finite volume cell if the boundaries of the cell do not align exactly with the surface of the steel47

bar. Or it may represent physical reality; for example, air is a mixture of nitrogen and oxygen48

gases, as well as water vapor. Regardless of the nature of the mixed cell, one must somehow49

provide to the fluid code what the material properties of the cell are as a whole. This is called50

a mixed cell closure. One such closure is pressure-temperature equilibrium (PTE), where all51

materials in the cell are assumed to be at the same pressure and temperature.52

State of the Field53

Typically fluid dynamics codes each develop an EOS package individually to meet a given54

problem’s needs. Databases of tabulated equations of state, such as the Sesame (Lyon &55

Johnson, 1992) and Stellar Collapse (O’Connor & Ott, 2010b) databases often come with56

tabulated data readers, for example, the EOSPAC library (Pimentel, 2021) and Stellar Collapse57

library (O’Connor & Ott, 2010a). However, these libraries typically do not include analytic58

equations of state or provide a unified API. They also don’t provide extra equation-of-state59

capabilities, such as equilibrium solvers or production hardening. With a few exceptions, these60

libraries are also typically not GPU-capable.61

We present Singularity-EOS, which aims to be a “one stop shop” for EOS models for fluid62

and continuum dynamics codes. It provides a unified interface for both analytic and tabulated63

equations of state. It also provides useful surrounding capabilities, such as Python wrappers,64

modifiers, which allow the user to transform a given EOS, and solvers which can find the state65

in which multiple EOS’s are in PTE. To support usability, the library is extensively documented66

and tested and supports builds through both cmake and Spack (Gamblin et al., 2015).67

Singularity-EOS leverages the Kokkos (Trott et al., 2022) library for performance portability,68

meaning the code can run on both CPUs and GPUs, as well as other accelerators. This fills69

an important need, as modern super computing capabilities increasingly rely on GPUs for70

performance. Singularity-EOS is now used in the ongoing open-source Phoebus project which71

has a separate code paper in-prep.72

Design Principles and Feature Highlights73

Here we enumerate several design principles underlying Singularity-EOS, and highlight a few74

feature of the library.75

Flexibility in loop patterns76

Singularity-EOS provides both scalar and vector APIs, allowing the user to make EOS calls77

on both single points in thermodynamic space, and on collections of points. The vector calls78

may be more performant (as they may vectorize), however care is made to ensure both APIs79

operate at acceptable performance, to accommodate different code structures downstream.80

Miller et al. (2024). Singularity-EOS: Performance Portable Equations of State and Mixed Cell Closures. Journal of Open Source Software, 0(0),
6658. https://doi.org/10.xxxxxx/draft.

2

https://github.com/lanl/phoebus
https://doi.org/10.xxxxxx/draft


DRAFT
Flexibility in memory layout81

The vector calls in Singularity-EOS use an accessor API and (with a few exceptions) accept82

any C++ object that has a operator[] function defined. This allows users to lay out their83

memory as they see fit and use Singularity-EOS even on strided or sparsely allocated memory.84

Expose APIs to aid performance85

Many equations of state are most naturally represented as functions of density and temperature.86

However, fluid codes require pressure as a function of density and internal energy. Extracting87

this often requires computing a root find to invert the relation88

𝜀 = 𝜀(𝜌, 𝑇 ).

In these cases, we expose an initial guess for temperature, which helps the solution rapidly89

converge. Similarly, the performance of a sequence of EOS calls may depend on the ordering90

of the calls. For example, if both temperature and pressure are required from an equation of91

state that requires inversion, requesting pressure first will be less performant than requesting92

temperature first, as the former requires two root finds, and the latter requires only one. To93

enable this, we expose a function FillEos, in which the user may request multiple quantities94

at once, and the code uses ordering knowledge to compute them as performantly as possible.95

Performance-portable polymorphism96

Accelerators provide new challenges to standard object-oriented programming. In particular, not97

all compiler stacks (such as Sycl (Reyes et al., 2020) or OpenMP Target Offload (Chandra et98

al., 2001)) support relocatable device code, which is required for standard C++ polymorphism.99

Even in programming models, such as CUDA (NVIDIA et al., 2020), which do support100

relocatable device code, polymorphism can be slower than naively expected, and the user-level101

API can be cumbersome, requiring operations such as placement new. To sidestep these issues,102

we use the C++ language feature std::variant to implement a polymorphism mechanism103

that works on device.104

Modifiers105

A given code may need to modify an EOS model to make it suitable for a given application.106

For example, the zero-point of the energy may need to be shifted, a porosity model may need107

to be added, or the unit system may need to be changed. We implement this with a system of108

modifiers, which can be applied on top of an EOS in a generic way. Modifiers may also be109

chained.110

Fast log-lookups111

To span the required orders of magnitude, tabulated equations of state are often tabulated112

on log-spaced grids. Logarithms and exponentials are, however, expensive operations and113

the performance of lookups can suffer. We instead use the not-quite-transcendental lookups114

described in (Miller et al., 2022) to significantly enhance performance of log-like lookups.115

Extensibility via modular parts and plugins116

Singularity-EOS is designed to be extensible. The std::variant-based polymorphism, com-117

bined with modifiers, as described above, already provides significant flexibility. However,118

downstream codes may wish to add functionality to the library. This may be implemented119

in several ways. First, as Singularity-EOS is open source, contributions from downstream120

developers are welcome. Second, a C++ code that depends on Singularity-EOS may implement121

Miller et al. (2024). Singularity-EOS: Performance Portable Equations of State and Mixed Cell Closures. Journal of Open Source Software, 0(0),
6658. https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
their own models and include them in a local variant object. Singularity-EOS provides tooling122

to build variants up iteratively. Finally, Singularity-EOS provides a flexible plugin infrastructure123

that allows downstream users to add capability to the core library locally by telling the build124

system to include a locally downloaded plugin. This final capability allows downstream users125

to share code with each other, even when committing that code to Singularity-EOS proper is126

not possible due to, e.g., licensing issues.127

Acknowledgements128

This work was supported through the Laboratory Directed Research and Development program,129

the Center for Space and Earth Sciences, and the center for Nonlinear Studies under project130

numbers 20240477CR-SES and 20220564ECR at Los Alamos National Laboratory (LANL).131

LANL is operated by Triad National Security, LLC, for the National Nuclear Security Adminis-132

tration of U.S. Department of Energy (Contract No. 89233218CNA000001). This research133

used resources provided by the Darwin testbed at LANL which is funded by the Computational134

Systems and Software Environments subprogram of LANL’s Advanced Simulation and Com-135

puting program (NNSA/DOE). This work is approved for unlimited release with report number136

LA-UR-24-23364.137

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel138

programming in OpenMP. Morgan kaufmann.139

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., Supinski, B. R. de, &140

Futral, S. (2015). The spack package manager: Bringing order to HPC software chaos.141

Proceedings of the International Conference for High Performance Computing, Networking,142

Storage and Analysis. https://doi.org/10.1145/2807591.2807623143

Lyon, S. P., & Johnson, J. D. (1992). Sesame: The los alamos national laboratory equation of144

state database (LA-UR-92-3407). Los Alamos National Laboratory.145

Miller, J. M., Dolence, J. C., & Holladay, D. (2022). Not-Quite Transcendental Functions and146

their Applications. arXiv e-Prints, arXiv:2206.08957. https://doi.org/10.48550/arXiv.2206.147

08957148

NVIDIA, Vingelmann, P., & Fitzek, F. H. P. (2020). CUDA, release: 10.2.89. https:149

//developer.nvidia.com/cuda-toolkit150

O’Connor, E., & Ott, C. D. (2010a). A new open-source code for spherically symmetric stellar151

collapse to neutron stars and black holes. Classical and Quantum Gravity, 27 (11), 114103.152

http://stacks.iop.org/0264-9381/27/i=11/a=114103153

O’Connor, E., & Ott, C. D. (2010b). Stellar collapse: microphysics. https://stellarcollapse.154

org/equationofstate155

Pimentel, D. A. (2021). EOSPAC user’s manual: v.6.5. Los Alamos National Lab. (LANL),156

Los Alamos, NM (United States).157

Reyes, R., Brown, G., Burns, R., & Wong, M. (2020). SYCL 2020: More than meets the eye.158

Proceedings of the International Workshop on OpenCL. https://doi.org/10.1145/3388333.159

3388649160

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri,161

R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D.,162

Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., & Wilke, J.163

(2022). Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions164

on Parallel and Distributed Systems, 33(4), 805–817. https://doi.org/10.1109/TPDS.165

2021.3097283166

Miller et al. (2024). Singularity-EOS: Performance Portable Equations of State and Mixed Cell Closures. Journal of Open Source Software, 0(0),
6658. https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.1145/2807591.2807623
https://doi.org/10.48550/arXiv.2206.08957
https://doi.org/10.48550/arXiv.2206.08957
https://doi.org/10.48550/arXiv.2206.08957
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://stacks.iop.org/0264-9381/27/i=11/a=114103
https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	State of the Field
	Design Principles and Feature Highlights
	Flexibility in loop patterns
	Flexibility in memory layout
	Expose APIs to aid performance
	Performance-portable polymorphism
	Modifiers
	Fast log-lookups
	Extensibility via modular parts and plugins

	Acknowledgements

